您现在的位置: ag8亚洲国际 > 人工智能 >
人工智能论文2000字范文(精选7篇)
作者:   ag8亚洲国际   

  电脑在二十世纪70年代末期开始广泛普及,当时,有些专家便预计说,电脑可以改变人们的日常生活,并且使社会文化随之改变。

  现在,时间的车轮运转到了2000年,专家们的这些预想至少已经有一部分成为现实。今天,人们已经在开始讨论有关电脑会不会具有人类的某些智能。这类课题已经不是什么科学幻想,而是非常严肃的学术讨论了。

  文章摘要:随着社会的不断发展,人们的生活水平也在不断的提升,工业化也向着智能化的方向进行发展。在电气工程自动化中使用人工智能技术能够有效的提高电气工程的工作效率,对电气工程设备进行自动化的控制,明显的提高电气自动化的工作效率。因此,对电气工程自动化中人工智能技术的运用进行综合性的分析,使得人工智能技术能够更好的服务于电气工程。

  现阶段,我国的工业企业在进行工作的过程中,运用电气工程自动化技术较为广泛,并且随着人工智能化技术的不断提高,促进了电气工程自动化产业的发展,还可以模拟人体大脑进行工作,对庞大的数据信息进行分析、处理和搜集,从而实现电气工作的自动化生存,这样一来,不但能够提供电气工程的工作效率,而且还能对产业结构进行优化。同时,智能化技术的运用不仅仅提高了电气工程自动化控制系统的工作效率,而且还有效的减少了问题的出现。

  人工智能化技术是指借助人力所制造的智能化设备来代替人力进行工作的机器被称为人工智能化机器。目前,人工智能化设备主要借助计算机来作为基础,结合人工的方法和科学技术,将人类的思维和智慧融入设备中,使得制造出来的机器更加的智能化和自动化。人工智能化技术的发展离不开科学技术的发挥。随着社会的不断进步,科学技术也在不断的发展,从传统的自动化机器向人工智能化的方式进行转变,其中运用到的知识不仅仅是单纯的计算机知识,还包含其他学科的知识。比如,心理学、物理学、计算机学等。与此同时,电气工程自动化技术为工业化生产提供了监督管理能力和控制能力。

  传统的电气工程中,控制器在建立模型的过程中会遇到诸多的不确定因素,并且直接影响了控制器的构建,甚至会都控制器的正常运行和工作产生营销。比如,在控制器模型建立的过程中,由于重要参数的变化,使得控制器的正常运行无法达到预期目标。与人工智能化技术进行比较,人工智能化技术在设计控制器的过程中,以建立动态模型为理念,大大降低了人工智能化技术对外部环境的影响,确保了系统的正常运行。

  在电气工程自动化工作中运用人工智能技术,在对参数进行调整的过程中,工作人员需要对人工智能化设备进行具体的参数设置,从而才能实现电气工程自动化的控制,简化了工作流程。除此之外,与传统的控制器进行比较,人工智能化技术的优势还体现在以下几方面:(1)较好的适应能力,能够满足多变的情况下自动化系统的正常运行;(2)简化操作流程。在没有专业技术人员在场的情况下,整体系统也能正常的进行工作,帮助企业降低了对人力、物力方面的资金投入。除此之外,人工智能技术还能根据实际工作的情况,科学合理的设定参数,大大减轻了工作人员的工作压力和工作量;(3)对现有设定的参数进行综合性的分析,并且根据实际的情况来进行数据的修改,从而提高工作效率。

  在电气工程自动化系统中,产品的设计过程较为复杂,并且设计方案较为繁琐。设计人员在进行产品的设计过程中,需要选择科学合理的方法来进行产品的设计,并且对现有的设计技术和设计经验进行借鉴,确保设计出来的产品具有实用性。但是,在科学技术和计算机技术发展的过程中,借助人工智能技术来对产品进行设计,将设计过程从传统的设计方式向着人工智能设计方向进行转变。这样不但能够有效的缩短电器产品的设计时间,而且还需要提高产品的质感。

  电气设备在进行正常的运作过程中,由于工作时间较长,工作人员缺乏专业的保养技术和维修设备的技术。一旦设备发生故障,需要浪费大量的时间来进行故障的检修,然而,人工智能技术在电气工作自动化工作中的运用,能够有效的缩短设备的维修和保养时间。除此之外,可以借助网络技术在设备发生故障时,可以详细的记录设备出现故障的时间、原因等内容,缩短了故障检修的周期,增加故障检修的安全性和可靠性。

  在电气设备进行运作的过程中,由于一些突发情况导致设备发生故障。工作人员在对故障进行诊断的过程中,需要借助新型的诊断技术来对设备发生的问题进行分析。人工智能技术对故障的分析已经应用在很多方面,比如:发电器故障的检修、变压器故障的检修、电动机故障的检修等。但是,借助传统的人工技术来对设备的故障进行分析和诊断,不仅仅浪费的人力、物力,增加了企业的资金投入,并且无法提高故障的诊断效率。将人工智能技术运用在电气设备故障检测过程中,可以在最短时间内诊断出设备发生故障的原因,并且将人工智能技术与其他理论相结合,大大提高了电气设备故障的诊断效率和准确性。

  随着社会的不断发展,对企业的要求也逐渐的提高。电力企业也在逐步提高电气自动化水平,不断的扩大人工智能技术的应用范围,这也是电气企业发展的必然趋势。目前,在电气设备控制中最核心的工作是提高电气系统的工作效率,从而促进电力企业的发展。为了更好的实现制定的目标,需要对现有的电气自动化控制技术进行提高,有效的将人工智能技术运用在电气设备的控制中,实现电气控制自动化的发展,从而提高电气设备的运行效率。除此之外,还能帮助企业节约人力和物力。现阶段,人工智能技术在电气设备的运用主要包含以下几个方面:专家系统的控制、神经网络的控制、模糊控制等。在电气设备控制的过程中,使用最为频繁的是模糊控制,主要由于其操作较为简单,并且与实际的工作目标相符合。

  随着社会的不断发展,科学技术也在不断的发展过程中,并且对企业的要求也逐渐的提高。电力企业也在逐步提高电气自动化水平,不断的扩大人工智能技术的应用范围,这也是电气企业发展的必然趋势。因此,需要对人工智能技术在电气工程自动化的具体应用进行分析,确保其满足电气设备的正常运作需求,提高电气工程自动化的运作效率。总而言之,人工智能技术在电气工程自动化中具有良好的发展前景,能够有效的促进企业的发展,减少企业在人力、物力和财力方面的投资,降低企业的生产成本。

  摘要:电气设备也在人工智能技术的应用下实现了电气自动化,本文将围绕着电气自动化控制中的人工智能技术展开探讨。

  毫无疑问,人工智能技术的出现是社会与科技发展的必然成果,并且随着人工智能技术的成熟,其在社会各个行业的应用也越来越多。人工智能技术是以计算机技术理论为基础,其他多个专业学科共同作用下共同构建出的。

  在电气工程中,人工智能技术主要应用在电气设备的设计方面。电气设备的设计程序繁多、复杂,进行设计的时候,不仅要熟练掌握电路、电磁场、电机、电器等等相关理论知识,还应该有足够的判断能力和设计经验,能够处理一些临时的变化。按照传统的设备设计方法,设计程序主要依靠人工编制,这种方式远远不能满足电气自动化的标准设计,但是,如果加以计算机辅助,就会大大缩减设计时间,同时还可以在很大程度上提高产品质量以及其工作效率。

  随着社会的不断进步,人们的生活水平有了很大的提升,无论是平常的生活,还是工作,学习,都已经不能缺少电气设备,所以说,电气设备安全、稳定的运行,在一定意义上,就是社会生产,人们生活的安全与稳定。在利用电气设备的时候,应该按照设计说明书,遵循操作规范进行操作使用。传统的操作方法不仅复杂,而且操作程序比较死板,一个环节出错就可能引发重大失误,带来严重后果。而人工智能化的出现,在很大程度上改变了这些问题,不仅简化了设备的操作程序,提高了操作效率,而且可以智能化的识别错误、提示错误,进而更正错误,降低错误率,甚至在一定程度上将错误发生率降至零。大大提高了电气设备的安全与稳定,对电气设备的运行具有很大的促进作用,提高了设备的实用性。

  电气自动化中事故与故障诊断,就是指对相关机械设备进行信息确定,对其运行状态进行判断.杳看是否正常,一旦发现异常,能够快速对故障进行准确的定位,并分析故障类型,然后有针对性的找出对策。电气设备的运行受到各种干扰因素的影响,特别容易出现故障或者事故,如果没有及时的进行处理,就有可能小故障变大故障,甚至引发安全事故,对工作人员、电气系统以及企业都造成重要的损害,同时带来不良的社会影响。所以,对于电气设备的故障进行准确而又及时的判断,是非常重要的。

  在电气系统中,对电气设备的控制同样是非常重要的一部分工作。现如今,实现电气设备的自动化与智能化已经是一个大的趋势,智能化的实现主要就是通过对设备的控制。不仅能够在很大程度上提高工作效率,适当降低成本,还可以减少人员用工。例如,在人工智能技术中,比较先进的技术有模糊控制、神经网络控制、专家系统等,他们都可以实现对电气设备的智能化控制,而且非常精确,控制效果非常不错。就拿模糊控制来说,最常用的方法就是Sugeno与Mamdani, Mamdani技术主要是对设备的速度进行调节,其主要是一种高效率的交流传动控制技术,在很大程度上提高了电气设备的工作质量和工作效率。

  在传统的电气设备设计中,主要是依靠设计人员的经验,缺乏一定的技术性,同时设计工序比较简单,设计质量不高。然而,当经济水平与科技力量都有所提高,国家也开始注重这方面的开发,加大了资金的投人。随着研究力度的加大,我国在这方面的成就也逐渐显现出来,人工智能技术也逐渐被应用于产品设计。人工智能化的应用,提高了产品的自动化程度,提高了生产效率,加大了产品的智能化,对产品质量来说是一个巨大的保障。

  综上所述,随着科学技术的不断发展,人工智能技术已经逐渐成熟,其精度与控制力都有了很大的提高,将其应用在电气工程中,不仅提高了系统的运行效率,还极大的方便了管理,提高了电气设备的安全与稳定,在很大程度上提高了企业的经济效益,带来了很大的社会效益,所以说,在电气工程中使用人工智能化技术是值得推广的。

  本文的开头,我想先强调一个概念,究竟什么是人工智能。一般人看到AI第一瞬间便会想到机器人,但机器人只是一个容器,它的内核与控制系统才能被称作人工智能。再者,人工智能不能被单纯地被认为是与人类处在同等智能水平上的事物,总的来说,可以将它分成三个层次:1.弱人工智能;2.强人工智能;3.超人工智能。

  弱人工智能,是在单一领域具有超越常人的能力,比如说AlphaGo,它可以在围棋方面战胜李世石,但是若让它进行简单的计算,类似1+1=2这样的式子,它可能却是不行的。现阶段,弱人工智能存在于我们生活的方方面面。导航,Siri,天气预报,搜索引擎,音乐推荐等等,这都是人工智能,只不过大多数人并不知道罢了。所以那些“人工智能根本不可能造福人类”的说法是绝对错误的,正相反,人工智能给人们带来了诸多便利。因此,我希望大家能抛弃对人工智能的偏见,真正接纳人工智能的存在。组成人类的细胞都比弱人工智能层次要高,所以对待这一层次的人工智能,我们是不必担心的,若非要把有关人类的事物划分到这一层次中,类似核糖体的细胞器便是属于这一层次。

  人类是属于强人工智能层次的生物,而且是这一层次中顶端的存在。强人工智能,已经可以同人类一样进行各种脑力活动。但很遗憾,至今它还未曾问世。从弱人工智能到强人工智能的过渡是漫长的,从地球弱人工智能层次的氨基酸等有机物进化至生命,耗费的时间以亿计数。但是随着社会的进步,发展的能力、速度都会极大地提升,所以强人工智能的出现不会耗费太多时间,短则十年长则百年。由弱到强,需要有两方面的改变。

  人类的大脑运算速度经Kurzweil对不同大脑区域进行估算,大约为一亿亿次计算每秒。强人工智能不是终点,所以运算速度也必须超过一亿亿这个数值。但若是我们研究出超人工智能却只能供应极少数人,那必将会造成灾难上位者操纵人工智能统御下位者,这绝对不是我们想看见的。因此,我们要降低单位运算速度的成本,让成果平民化,让人工智能能真正造福所有人类。

  第二,提高弱人工智能的智能层次,然后通过人工智能的递变演化,让它到达更高的层次。这一点是最难处理的,也是可能导致人工智能转头空的最大因素,人类对智能层次的认识只能停留在浅薄的理论上,我们不知道如何将猩猩的大脑演化为人类的大脑,同样,我们也不知道如何将人工智能的层次提高到新的高度。不过万幸我们有我们自己这样一个完美的强人工智能系统,我们可以通过对自身的生物研究来推动人工智能的发展。这样做有两个方向:1.逆推,根据人本身大脑的思考模式逆推出运算的模式,再将这种模式代入到人工智能上;2.正推,从细胞开始,不断推动生命层次的研究,一步一步地将大脑的运算模式推断出来。两种方向皆有利弊,从我自己来说,这两种方向应同时进行,一个最大的原因便是人类若想得到长足发展,必先研究透自身,一举两得,何乐而不为?

  强人工智能即指超过人类的层次,它可能超过一点,也可能超过几千万倍,跨度极大。也正是因为它的不可控性,人们才会认为这是一个潘多拉魔盒,会毁灭人类,但是这也同样可能使人类真正永生。那么有什么办法能使超人工智能受到人类的控制呢?答案是没有,起码在我们当前的认知中是不切实际的。自然界创造了人类,可人类却近乎脱离了自然界的控制。那么,人工智能是不是该停止呢?我认为不该。前面提到了递变演化,超人工智能的层次提高是人类插不上手的,只能靠它自身的递变演化。但是递变演化却不是只出现在人工智能身上,人类也有自己的递变演化,而且根据加速回报理论,递变的单位所需时间是会逐渐缩短的,如果我们能从人工智能那里取得这样的经验,发展的就不会只是人工智能。再者,从强人工智能到超人工智能的层次质变,同样可以被借鉴用于人类的发展,这就意味着人类自身是会永远领先人工智能一步。难道人类担心过被猴子毁灭吗?没有。同样人工智能就好比比我们智能层次低的猴子,也不会导致我们的毁灭。并且我们可利用人工智能为我们自身服务。当然,这只局限于理论推导、假设猜想,很可能未来的走向会与之大相径庭。

  人工智能的发展不应是单方面的,视野必须拓宽出去。对于人工智能的研究其实等同于对人自身的研究,它不仅仅只是一门计算机科学,更是一门生命科学。如果能将它的研究与生命科学的研究结合起来,人们对它的了解就可能更透彻。比如说,对于大脑的研究,一定会牵扯到思维的研究,而对思维研究的深入,可以让我们更好地设计智能的思维,甚至于我们可以将人类的心理在不影响性能的情况下导入其中。人类的心理会使它们站在人类的角度思考,甚至可以说智能便成了人类的另一种存在形式。在这里,就又引出一个问题:安全和性能,我们应更注重哪一个。答案非常明确,安全。如果连安全都保证不了,那它就没有存在的价值。原子能,人类可以控制,所以才有了核电的存在。人工智能同样如此,虽然我希望人工智能能造福人类,但若能证实它对人类的弊大于利,那就应该终止有关的研究,让它成为历史。

  有人说人工智能是人类最后的一项发明,因为一旦超人工智能出现,人类便会灭绝,未免太过悲观了。生物与生物之间最纯粹的关系是利益关系,人工智能与人类之间也可以通过利益关系关联起来,并且让人类处于主导的地位。那么人类可以为人工智能提供什么利益呢?目标。人类是已知唯一有独立意识的存在,我们可以提供给人工智能目标,这就需要我们再设计时不能让它产生独立意识,如果这能实现,就意味着我们拥有了超越人类层次却对人类无比忠诚的存在,人类社会的发展必因此得到更大的进步。

  请各位同学想象一下这个场景:你老妈打电话跟你说她把银行密码忘记了,让你告诉她银行卡密码。想必你也知道了,跟你通话的其实不是她本人,而是电脑合成的声音,只是听起来很像而已,这就是人工智能技术的杰作。

  虽然利用人工智能在电话中伪装某人的这种技术仍然只会出现在科幻电影中,但这种高科技犯罪手法在未来很可能会成为现实。目前,这种伪装技术所需要的软件组件正在飞速发展之中。例如,最近 Alphabet 公司旗下的子公司 DeepMind(该公司开发了一款能打败顶尖棋手的人工智能围棋程序 Al-phaGo)宣布,他们已经设计出了一款能够模仿人类声音的新程序,而且声音听起来比目前最好的文本语音转换系统更自然,并且成功将机器语音与人类声音的差异缩小了 50%以上。

  虽然一切听起来十分美好,但人工智能技术也有其自身的缺陷。Marc Goodman 是某执法机构的一名顾问,同时他也是《FutureCrimes》的作者,他表示:“可能很多人现在还没有意识到,网络犯罪正趋向于自动化,而且扩张速度惊人。现在已经不是 Matthew Broderick 躲在地下室去攻击别人计算机的年代了(电影《战争游戏》1983 年版中的情节)。”

  这款恶意软件在地下黑市的销量非常高,据 Goodman 所说,由于 Blackshades 可以为犯罪分子提供很多强大的功能,因此这款恶意软件也被大家称为“网络犯罪分子的潘多拉魔盒”。在 Blackshades 的帮助下,使用者压根不需要懂得任何的黑客技术,用户只需要点击几下鼠标便可以实现攻击。这款恶意软件不仅可以轻易地让目标计算机感染勒索软件,而且还能对目标进行视频和音频监控。

  人工智能领域的研究人员目前正在研究如何提升机器学习的能力,因为他们希望改善计算机视觉、语音理解、语音合成和自然语言理解的处理质量。但这也会带来一些不好的影响,因为犯罪分子也可以在下一代恶意软件中增加这种机器学习的能力。有一些安全研究专家则认为,其实早在五年前就已经有犯罪分子在利用人工智能技术进行网络犯罪活动了。

  现在,几乎所有的互联网+服务都会要求用户在使用前输入验证码,而犯罪分子们一直都在试图破解验证码技术。验证码的全称是“全自动区分计算机和人类的图灵测试”,这项技术是美国卡内基梅隆大学的研究员于 2003 年发明的,网站运营者可以利用这项技术来防止自动化程序盗取用户的网络账户数据。

  毫无疑问,随着科技的不断发展,网络犯罪分子肯定会尝试利用新兴的技术来进行犯罪活动。像苹果的 Siri 和微软的Cortana 这样的语音识别技术目前已经得到了广泛使用。亚马逊的声控智能音箱 Echo 和 Facebook 的人工智能聊天机器人也成为了电商与顾客之间的沟通工具。与以前一样,每当类似语音识别技术这样的新型技术成为了市场上的主流之后,犯罪分子一定会利用这项技术去大做文章。

  调查记者 Brian Krebs 在上发表文章称:“在我看来,那些为客户提供了智能聊天服务的公司绝对忽略了一个问题:在信息安全领域中,想要获得便捷性,往往就会以牺牲安全性作为代价。通过聊天机器人来服务客户,这一切看似非常方便,但这也使得攻击者有可能通过社会工程学技术来攻击这些网络服务。”

  Pelican公司的创始人兼首席执行官帕尔特德赛(Parth Desai)认为,人工智能已是事实,而非幻想,银行业现如今的重中之重是在交易与支付上实现人工智能的实际应用。

  根据Gartner 预计,到2020年,人工智能将普遍存在于新产品中。帕尔特说:“现在大家都在讨论人工智能在金融服务上的潜力,以及它将如何帮助精简程序并提高附加价值,但我们必须从现实的角度了解哪些是具有可能性和操作性的。”

  无疑,人工智能正通过计算能力和机器学习来模仿人类的智能行为,尤其是在军用和民用领域。尽管各行各业对它的炒作热度有增无减,人工智能也不应被视为解决任何问题的灵丹妙药,甚至它还有较长的一段路要走。

  在帕尔特看来,人工智能是游戏规则的改变者。金融服务业的早期采用者则认为这是一个循序渐进的迭代过程,随着时间的推移,人工智能将戏剧性地改变银行业的用户体验。在某些交易银行和支付合规领域,已经可以在劳动密集型的环节中看到人工智能应用的身影,例如最低成本的路由维修等。银行业下一步将集中在产品创新领域,并减少市场投放时间。人工智能的应用案例几乎都证明了,人工智能确实有助于减少甚至取代一直以来由人类劳力担任的知识密集型、单调性和重复性的工作。

  金融行业迫切需要改变,这也是智能支付管理概念出现的原因。根据对人工智能20多年来的沉浸式研究,帕尔特认为智能支付管理有潜力改变每一个金融机构的运营方式,并且最终所有金融机构都能开展这项业务。人工智能以深度学习、自然语言处理和基础知识系统这3个关键领域为支撑,而智能支付管理可确保计算机精确处理每个支付环节,并充分理解每笔模仿人类推理而达成的交易背后的目的。

  他认为,根据现有的应用经验,智能支付管理与传统高度依赖人工的支付系统有所不同,它能从根本上降低成本,加快产品创新,大大减少投放市场的时间。因此,基于人工智能技术之上的智能支付管理将解放银行生产力,使他们能够快速高效地开发下一代产品,提供更高水平的客户服务,提高盈利能力,从而在日趋激烈且拥挤的市场竞争上占据明显优势。

  【摘 要】21 世纪以来,随着计算机技术、信息技术和网络技术的快速发展,人工智能识别技术应运而生,成为一种新兴计算机技术,在各行各业、各个领域的应用范围不断扩大,为经济增长、社会发展提供重要基础保障。然而,就当前应用情况来看,计算机人工智能识别技术的应用面临一系列瓶颈问题。基于此,文章通过研究和探析计算机人工智能识别技术应用瓶颈问题,为计算机人工智能识别技术的应用和发展奠定坚实基础。

  作为一种自动化、智能化、科学化计算机技术,计算机人工智能识别技术通过将人类思维模式从抽象化到具体化,进行准确识别、科学判断和准确模拟,最终通过计算机程序完整体现出来。计算机人工智能识别技术被广泛运用于各个领域,与其他计算机技术相比,人工智能识别技术的应用前景更为广阔,能够为人类提供更为高效、便捷和优质服务。近年来,计算机人工智能识别技术在我国相关领域中取得一系列显着应用成效,然而由于发展时间较短,尚未形成一套完整的运行体系,整个应用过程依然面临诸多瓶颈问题。因此,本文研究具备一定的实践意义。

  人工智能识别技术,实质上指的是基于计算机技术和人工智能平台所衍生出来的一种科学技术,人工智能识别技术能够对人类各种思维模式、行为方式进行准确识别和完整模拟,经过智能化、自动化,所形成的一种自动智能化机器。在实际应用过程中,计算机人工智能识别技术装置可以对相关物品信息进行扫描、识别。比如: 超市中所利用的扫描装置,就是一种人工智能识别装置,通过扫描产品上的条形码,产品的质量、单价、名称等相关信息便会完整呈现出来,售货员进行数量的录入,便可以进行总价的计算,作为计算机人工智能识别技术的一种典型应用案例[1]。此外,计算机人工智能识别技术还能够被应用于企业办公自动化、生产智能化等方面,从而有利于人们办事效率、工作水平的大幅提高。

  第二,条形码识别技术。一般而言,条形码识别技术可以划分为两种: 一是一维条码技术; 二是二维条码技术。二维条码技术是一维条码技术的衍生物,在一维条码技术的改进和优化之上所形成,所以二维条码技术更为先进,能够进行数据信息的采集、识别,并能够准确、即时显示出来,被广泛运用于条码扫描和信息识别等方面。

  20 世纪 60 年代之后,随着计算机技术、信息技术和网络技术的快速革新,人工智能识别技术因此得到快速发展,其应用范围和领域不断扩大,逐步发展成为各行各业、各个领域的核心技术。

  研究表明,机器人技术源自于 20 世纪 70 年代,成为一种专业学科。同时,机器人技术被各个领域所使用,取得一系列显着应用成效。比如: 机器人技术运用于外科手术中,机器人助手能够帮助外科手术医生进行手术,其应用范畴不断扩大。究其原因,机器人人工智能识别技术不仅能够减少组织成本性资金投入,而且有利于组织内外部风险的预防和规避。当然,尽管人工智能识别技术在机器人产业中的应用力度较大、范围较广,但是依然需要改进和完善。

  人工神经网络简称为神经网络,是批量处理单元相互交织形成的一种特殊网络形态。神经网络基于人脑,是对人脑抽象活动的具体化、简单化和模拟化,与人脑基本功能极为相似。人工神经网络是通过对人脑活动、指令的模拟、效仿,并从中得到启发,进行批量单元信息的处理。人工神经网络中,神经元之间的相互作用便会产生信息处理过程。尽管人工神经网络并不能等同于人脑,也不能完全发挥出人脑所有作用,但是却能够通过人工智能识别技术帮助人类进行自动化、智能化事件的处理。

  20 世纪末,以密码、密钥等安全识别技术为主的信息、数据安全保障手段被广泛运用于各行各业、各个领域之中。然而,其具备一定的易复制性、丢失性、不稳定性,所以在一定程度上严重制约和影响到信息安全技术的发展。计算机人工智能识别技术基于计算机技术之上,通过对信息数据进行采集、识别和录入,能够为人们提供便捷的操作方法[3]。然而,我国计算机人工智能识别技术发展应用时间较短,尽管取得了一系列显着成效,应用范围不断扩大,但是其依然面临巨大的应用瓶颈问题。

  语音人工智能识别技术旨在让机器能够读懂和识别出人类语言,并按照人类的指令进行一系列操作。语音人工智能识别技术作为计算机人工智能识别技术的一项核心技术,长期以来,深受国内外学术界的高度重视。与此同时,语音人工智能识别技术被广泛应用于各行各业、各个领域,其技术和产品优势十分鲜明,在语音电话、语音通信、语音交互等方面取得显着应用成效。21 世纪以来,计算机人工智能识别类产品类型的不断增多,语音人工智能识别技术得到快速发展,以语音识别技术为载体的芯片数量日渐增多。然而,语音人工智能识别技术的发展时间较短,依然存在应用瓶颈问题,具体表现在以下三个方面:

  (1) 语音识别技术有待提升。语音识别技术实际应用过程中,必须尽可能排除外界环境的干扰,比如: 外部其他噪声。唯有此,才能准确识别音色、音调、音质。尽管语音识别技术基本上实现了智能化,但是以目前的技术来讲,并无法在外部噪音的干扰下准确识别语音。如此一来,从一定程度上影响到语音识别技术的发展。因此,要想确保语音识别技术能够在外部噪音影响的情况下实现准确识别,必须采取特殊抗噪音麦克风,这对于普通用户来讲,基本上达不到该项要求。与此同时,用户在日常谈吐过程中,较为随意,具有明显的地方特色,加之语速、频率等控制影响较大,普通话不标准等问题,直接影响到语音识别设备对音色、音调、音质等的准确识别。除此之外,人们的语言受到年龄、情绪、身体素质等的影响,其音色、音调、音质随着自身及外部环境的变化而改变,直接给语音识别形成影响。因此,当前语音识别技术可靠性有待提升。

  (2) 语音识别系统不健全,词汇量较少。目前,我国计算机人工语音识别系统词汇量较少,在实际运行过程中,并不能识别到所有的音色、音调和音质。倘若语音模型有一定的限制,词汇中出现一些难以识别的方言、外语,那么语音识别系统将无法在较短的时间内准确识别出语音,甚至会出现识别错误、不准等情况。基于此,随着语音识别技术的不断发展,其应用范围的进一步扩大,需要进行其词汇量的增加,尽可能准确、快速识别出更多的语音,而建模方法、搜索算法的逐步变革,使得语音识别系统不能实现智能化识别,仅仅能够识别出基础的音色、音调和音质,对于其系统、深入、全面应用来讲,依然存在较多的瓶颈问题[4]。

  (3) 应用成本较高、体积较大。目前,我国计算机人工智能识别技术的应用范围不断扩大、应用领域不断增多,特别是语音识别技术的应用成效十分显着。然而,语音识别技术的应用成本依然很高,使得普通用户基本无法接受。就目前的发展情况来看,语音识别技术应用成本的降低似乎难度很大。对性能、功能要求较高的语音识别基本上无法实现,当前的条件并不成熟,无法实现规模化、系统化和全面化,仅仅能够准确识别要求标准较低的语音,而受到成本因素的制约,使得语音识别设备的研发和生产过程受到严重影响。与此同时,语音识别技术体积较大,占用较多的空间资源,巨型化向微型化发展作为语音识别技术未来发展的主要趋势。

  视觉人工智能识别技术与语音人工智能识别技术相同,均作为计算机人工智能识别技术的重要组成部分。然而,视觉人工智能识别技术面临的应用瓶颈问题更为严重。通过进行相关信息数据的采集、传输、识别和处理,进而达到人工智能化的目的。常见的视觉人工智能识别技术有人脸识别技术、指纹识别技术等,下面重点阐述人脸识别技术和指纹识别技术应用瓶颈。

  (1) 人脸识别技术应用瓶颈。人脸识别技术主要通过对人脸结构、瞳孔等关键部位进行准确识别和有效判断。尽管人脸识别技术非常方便,便于人们进行身份的认证,但是在实际应用过程中,依然面临以下几个方面的瓶颈问题: 一是由于人们脸部表情各不相同,即使同一人,其面部表情也随情绪、外部环境的变化而改变,数据库中的人脸表情数据十分有限,从而之间影响到人脸识别效果; 二是人脸结构、轮廓均会跟随外部环境、个人情绪、年龄等发生改变,从而造成识别效果并不明显; 三是受到外部环境,诸如光线之类的因素影响,人脸识别同样面临不确定性因素; 四是人脸具有一定的雷同性,这就难免造成人脸识别设备的误判、误识。现阶段,人脸人工智能识别技术在我国相关领域已经取得一系列显着成效,但是在实际应用过程中,依然面临较大的瓶颈问题,比如: 脸部表情、脸部轮廓、脸部结构、发型、化妆、外部光线等的不同,都将给人脸识别带来巨大的挑战和识别压力。国内外学术界专业学者经过几十年的研究和探索,从各个学科层面出发,对人脸智能识别技术展开了大量研究,但是依然有一些难以彻底解决的难题。就人类自身而言,在日常的生活交际过程中,对人们的面孔识别也难免会出现差错,而人脸智能识别技术跟人脑相比,依然有一定差距,其人脸识别过程更为困难,特别是精准度方面难以有效掌控,这将是制约和影响其发展的一大瓶颈问题。

  指纹识别技术通过对人们指纹断点、纹路、交叉点等进行准确识别,从而识别出人们独一无二的身份,有利于个人身份及其他私人信息的保护。然而,看似非常严密的指纹识别,却面临指纹被非法采集的问题,倘若一个人将指纹信息泄露出去,或者被他人所利用,那么其自身信息将容易被暴露、被利用[5]。如此一来,面临巨大的风险隐患。与此同时,尽管指纹识别系统采取非常先进的计算机人工智能识别技术,但是在实际应用过程中,某些人的指纹信息较为模糊,基本上无法看清纹路等,这将无法进行指纹的准确识别。例如: 目前国内外大型公司所配置的签到打卡机,便是一种典型的指纹识别装置,便于公司掌握员工出勤情况,但是如果员工指纹损伤,那么将基本上不能被识别。由此可见,指纹识别技术在实际应用过程中,面临一系列瓶颈问题。



版权所有@ < 贵州ag8亚洲国际信息技术产业联盟 >
邮箱:gzitia@163.com
联系地址:贵州省贵阳市云岩区延安中路丰产支路1号振华科技大厦23楼F座